
A SET-BASED SHAPE GRAMMAR INTERPRETER, WITH
THOUGHTS ON EMERGENCE

ANDREW I-KANG LI AND LAU MAN KUEN
The Chinese University of Hong Kong, China

Abstract. We present a set-based interpreter, implemented in
Multimedia Flash, of a shape grammar for teaching the language of
twelfth-century Chinese wood-frame building sections. We discuss the
implementation of various aspects of the shape grammar formalism –
shape representation, the part relation, and so on – the usefulness of
the interpreter, and thoughts on the role of emergence in grammar
interpreters.

1. Introduction

Shape grammars have a wide range of capabilities: emergence,
parameterization, descriptions, labeling, weights, multiple drawings, and so
on. However, interpreters that support all these capabilities have yet to be
developed. Existing interpreters1 have all been restricted, in ways that derive
from the intent of the grammars they implement.

Grammars intended as creative design tools (i.e., design or synthetic
grammars) generally use emergence and matching under multiple
transformations, but not extensive labeling or parameterization. Interpreters
that support such grammars – let us call them synthetic interpreters – are
restricted accordingly. Because of these restrictions, at least in part, Chase
(2002, 162) observes that “[t]he user interactions in such tools tend to be
rather limited in scope.”

Interpreters that support analytic grammars, or analytic interpreters, on
the other hand, tend to be restricted in the opposite way: they use extensive
labeling and parameterization, but not emergence or matching under
multiple transformations. In this case, the restrictions seem less noticeable to
the user.

Take as an example Flemming’s (1987) Queen Anne interpreter which,
as he emphasizes, is based on a set representation (Stiny 1982) and so does

1 Gips (1999) provides a summary.

2 A. I. LI AND M. K. LAU

not support emergence. He does not need this capability; indeed, he “hardly
missed having a general shape grammar interpreter available” (Flemming
1987, 266).

In addition, he knows that the design space is restricted in another way:
“under the selected representation, properties such as the fact that certain
edges form a rectangle, are already implied and do not have to be laboriously
established whenever a rectangle is called for” (Flemming 1987, 268).

Thus the restrictions of analytic interpreters are not seen as shortcomings,
but those of synthetic interpreters are. Chase (2002, 162) suggests that the
shortcomings “may be due in part to … a lack of understanding how
grammars relate to the design process” and calls for “[f]urther research on
interactions in grammar systems.”

As a step in this direction, we present an analytic interpreter built for a
narrow purpose: to create wood-frame building sections according to the
twelfth-century Chinese building manual Yingzao fashi [Building standards],
by Li Jie (d. 1110). This interpreter is part of a larger scheme for teaching
the architectural style of this manual (Li 2003), a scheme which has led us to
specific ideas about the task for which the interpreter is a tool, the user’s
experience in completing the task, and the interpreter as a tool for the user.
These ideas have in turn led us to a specific conception of the interaction
between the user and the interpreter.

We find this interpreter to be largely satisfactory for its purpose, although
it also exhibits a telling shortcoming. By considering this example, we
derive some lessons about the relation between users and interpreters
generally.

2. Hypothesizing the language of sections

The Yingzao fashi is a prescriptive guide for building construction. Li’s
approach is in general not enumerative but generative, as noted by the
architectural historian Liang Sicheng (1984), who called it “a grammar
book.” By contrast, what Li has to say about building sections is not
generative but enumerative: a set of eighteen drawings and written
descriptions (see figure 1).

For us, a grammatical understanding of the language of which the corpus
is a part presupposes the following conceptual framework.2 The corpus of
sections is a set of empirical observations. The grammar is a hypothesis that
makes predictions (creates designs). The predictions are tested (the designs
are evaluated for stylistic correctness) and the hypothesis (the grammar) is
revised accordingly.

2 For a more thorough discussion, see Stiny and Mitchell (1978) and Li (2003; forthcoming).

A SET-BASED SHAPE GRAMMAR INTERPRETER 3

Figure 1. Drawings and written descriptions of building sections in the Yingzao
fashi. Shown here are the three sections of six rafters’ depth (Liang 1983, 319–320).

Not shown are the 15 sections of four, eight, and ten rafters’ depth.

To teach within this framework, we devise the following scenario. We
provide a grammar; the students test and revise it as necessary. We develop
the grammar with the expectation that it should generate all and more than
the sections in the language. Then the students’ task of evaluating and
revising designs is to see and eliminate rather than to imagine and add. We
expect further that students can eliminate designs by changing the
constraints on schema application, not by changing the schemata themselves.

The grammar is a parametric set grammar with descriptions.3 Each initial
design4 consists of a shape – a diagrammatic section of 6 rafters’ depth – and
two descriptions (one Chinese, one English). The initial shape consists in
turn of a ground line, two columns (front and back), purlin placeholders, a
vertical axis line, labels, and a symbol. The initial descriptions are 6-jia
chuan wu, ∅, yong 2 zhu, and 6-rafter building, ∅, with 2 columns (see
figure 2).

The grammar has four stages. In the first stage (schemata A1–A21),
building components, such as columns or beams, are inserted into both the
section and the descriptions. In the second stage (schemata A22–A31), any
remaining labels are cleaned up; the descriptions are left unchanged. In the
third stage (schemata B1–B17), building components (beams, rafters, etc.)
are inserted as necessary to complete the section. However, these
components are not specified in the descriptions, which therefore remain
unchanged. In the fourth stage (schemata B44–B48), the descriptions are
reduced to a standard form.

These four stages are not equally relevant to the user, whose task, we
recall, is to create and evaluate designs. Only the first stage is relevant,
because it is there that the user chooses the features that distinguish the
design within the language, that is, the salient features. It is nondeterministic
and requires the participation of the user.

3 For more on descriptions, see Stiny (1981). For more on the algorithm, see Li (2001).
4 We use the term design following Stiny’s (1990, 97) definition: “an element in an n-ary

relation among drawings, other kinds of descriptions, and correlative devices as needed.”
In our case the design consists of a shape (the section) and two descriptions.

4 A. I. LI AND M. K. LAU

Figure 2. The opening screen of the interpreter. The initial shape and descriptions
are above, in derivation view. The schemata (A1–A21) of stage 1 are below. Those

schemata that can be applied to the initial shape are shown undimmed.

The other stages do not contribute any salient features. They either do
grammatical housekeeping chores (stage 2), complete the section (stage 3),
or complete the descriptions (stage 4). They are deterministic and of little
interest to the user in the context we have described.

Thus we wish the user to pay attention to the schemata in stage 1 and to
be relieved of involvement in stages 2, 3, and 4. To help make this happen is
to us one of the main purposes of the interpreter.

3. The interface

3.1. REQUIREMENTS

Our situation contains the three entities of Chase’s (2002) model: developer
(teacher), users (students5), and interpreter. As already mentioned, we have
developed the interpreter6 to create a specific pedagogical experience for the
students; this is as follows.

5 We use students and users interchangeably.
6 An earlier version of the interpreter was reported in Li (2002).

A SET-BASED SHAPE GRAMMAR INTERPRETER 5

The student makes design decisions (applies rules) to explore the
language of designs. Thus the interpreter should help the student create
designs easily and assimilate the algorithm.7 More generally, the interpreter
should provide all the information that the user needs to make his decisions.
In terms of the derivation of a design, it should tell the user where he has
been, where he is, and where he can go. It should hide everything else.

In terms of revising the grammar, we expect that it should suffice for the
user to articulate constraints verbally (e.g., do not apply the same schema
twice in succession), and so do not provide for user modification. Given that
in stage A the interpreter provides 367 schema sequences that create only 32
distinct sections, we expect that most modifications should involve filtering
out inappropriate sequences, not adding schemata.

3.2. CONCEPTUALIZING THE INTERFACE

To discuss the interface, it is helpful to use some technical apparatus.
Consider a design D = 〈C, d〉, where C is the shape and d is the description.
Recall that the next design 〈C(i + 1), d(i + 1)〉 is derived from the current
design 〈Ci, di〉 in the following way. For the shapes,

if g(t(A)) ≤ Ci, then C(i + 1) = [Ci – g(t(A))] + g(t(B)),8 (1)

where A and B are respectively the left and right shapes in the schema A →
B, t is a appropriate transformation, and g is an appropriate parametric
assignment. For the descriptions,

d(i + 1) = f(di), (2)

where f is a description function associated with the schema A → B.
We propose that the interpreter should support the following scheme of

user interaction.
1 The interpreter shows the current design 〈Ci, di〉.

2 The interpreter shows which schemata can be applied to the current design
〈Ci, di〉 under an appropriate transformation and parametric assignment. In
other words, show those schemata A → B with associated descriptions f for
which g(t(A)) ≤ Ci under appropriate values of t and g. In stages 1 and 2, the
search is simplified to g(A) ≤ Ci, because there is not more than one
appropriate value of t.

7 In the previous version, users did in fact have to execute stages 2 and 3 manually. (Stage 4

had not been implemented.) It was immediately obvious that this distracted users, and we
added the capability of automatically deriving the deterministic sequences.

8 As José Pinto Duarte first pointed out, this interpreter actually implements g(t(A)) and
g(t(B)), not Stiny’s formulation of t(g(A)) and t(g(B)). There seems to be no difference in
outcome.

6 A. I. LI AND M. K. LAU

3 The interpreter shows the outcome C(i + 1) of the schema application, where
C(i + 1) = [Ci – g(t(A))] + g(t(B)).

4 The user chooses a schema.

5 The interpreter applies the schema and updates the current design.
In addition, the interpreter should record the derivation 〈〈C0, d0〉, 〈C1, d1〉,

…, 〈Cn, dn〉〉 and allow the user to undo schema applications back to the
initial design 〈C0, d0〉.

3.3. DESCRIPTION

The screen has two halves (see figure 2). The upper half is devoted to the
current design. The user can toggle between two views: the current design
and the next design in a large size (current transformation view; see figure 3),
or the whole derivation in a small size in a scrollable window (derivation
view; see figure 2). Both the Chinese and the English descriptions are shown.
The derivation can be printed.

The lower half of the screen contains the schemata. These are divided
over four “pages” corresponding to the stages mentioned above. Thus the
first page, entitled install named beam, contains schemata A1–A21; the
second, clean up labels, A22–A31; the third, complete roof, B1–B17; and
the fourth, complete description, B44–B48. Only the shape schemata are
shown; the description functions are shown in pop-up windows (see figure
3).

Schemata that cannot be applied to the current shape are dimmed. Those
that can be applied are undimmed. The schemata in stages 1 and 2 can be
applied under not more than one transformation and one assignment. Thus
one state – undimmed – covers all possible applications.

In stage 3, by contrast, some schemata can be applied under two
reflections and one assignment (see figures 4 and 5). Applicable schemata
are shown under one of the two reflections; the user can toggle between
them by clicking the mirror button. As a further help to the user, the
schemata are also shown under reflection. In stage 4, there are no shape
schemata, only description functions, so the question of transformations and
assignments is moot.

A SET-BASED SHAPE GRAMMAR INTERPRETER 7

Figure 3. Previewing the next design. The user has rolled over schema A2. The
current and next designs are shown in current transformation view. The description
functions are shown in a pop-up window. The elements to be changed in the shape

and the descriptions are highlighted.

When the user rolls the mouse over an applicable schema A → B, the next
design is previewed in the upper half of the screen, and the associated
description function appears in a pop-up window (see figure 3). Several
objects are highlighted in red:

• The schema’s left and right shapes A and B (in stage 3, the left and right
shapes under transformation t(A) and t(B), where t is toggled);

• The corresponding subshapes g(t(A)) and g(t(B)) in the current and next
shapes Ci and C(i + 1);

• Each description function f; and

• Those parts of the current and next descriptions di and d(i + 1) that are
manipulated by the function f.

Thus the user can easily survey the possible next designs. He can then
apply one of the applicable schemata or back up to the previous design and
resurvey the possibilities.

8 A. I. LI AND M. K. LAU

Figure 4. The schemata of stage 3 shown under the first of two reflections.

Figure 5. The schemata of stage 3 shown under the second of two reflections.

A SET-BASED SHAPE GRAMMAR INTERPRETER 9

When the user clicks on an applicable schema, he applies it under the
available transformation and assignment. The next design becomes the
current design, and the new set of applicable schemata are shown.

The user can generate a design by applying each schema manually from
beginning to end but, as we have mentioned above, such close engagement
in the deterministic stages is distracting. Thus in stages 2, 3, and 4, the user
can click complete automatically, and the interpreter executes that stage of
the derivation.

4. The implementation

The interpreter is implemented in Macromedia Flash, because Flash is
relatively easy to use and allows extensive control over the interface. In
addition, the projectors it creates are easy to distribute because they do not
need player software.

We will discuss here, not the mechanics of the supporting capabilities –
recording the derivation, undoing schema applications, etc. – but the
implementation of the shape grammar formalism – shape representation, the
part relation, and so on. As has already been mentioned, emergence is not
required. Thus the interpreter uses a set representation.

In the discussion below, we follow the scheme of interaction given above.
However, the last step, applying a schema and its description function,
involves only housekeeping and no shape grammar representation; we omit
it.

4.1. SHOWING THE CURRENT DESIGN

A design is represented as a table of values in the following way. It consists
of a shape and two descriptions, and is a finite set of discrete elements. Each
element has a finite number of attributes, and each attribute has a finite
number of values. To display a particular design is simply to display its
elements with the appropriate value of each attribute.

The shape is made up of elements that are either parts of the section (e.g.,
the ground line or a column) or control devices (labels and symbols). Each
element has a fixed position and the following attributes:

• Intensity: hidden, dimmed, shown, or highlighted;

• Form: circle, square, single triangle, or double triangle (for labels); A, B, or
C (symbols only); and

• Fill: hollow or solid (labels only).
The English description consists of text elements (letters, numerals, and

other symbols). The Chinese description consists of images of Chinese
characters, rather than characters as text elements, which Flash does not
support.

10 A. I. LI AND M. K. LAU

Below is the code for the Shape function, which instantiates a design.
Some parts of the section are represented as arrays, where the index indicates
the part’s position between the front and the back of the building. For
example, there are 7 possible column locations i, 0 ≤ i ≤ 6 from front to
back. A given column is represented as column_var[i], where i is its
location. As we will see, this representation enables the parameterization.

function Shape() { // creates both shape and
 // descriptions
 this.num_rafter = 6; // the depth of the building
 // in rafters
 // other values are 4, 8,
 // and 10
 this.purlin_front = 0; // locates the front purlin
 this.purlin_mid = this.num_rafter / 2;
 // locates the ridge purlin
 this.purlin_back = this.num_rafter;
 // locates the back purlin
 this.purlin_var = new Array();
 this.column_var = new Array();
 this.beam_var = new Array();
 this.roof_var = new Array();
 this.control_var = new Array();
 this.controlclean_var = new Array();
 this.baseline_var = new Array();
 for (i = 0; i <= 6; i++) { // 6 = this.num_rafter
 this.purlin_var[i] = "circ_hol_show";
 this.column_var[i] = "hide";
 this.control_var[i] = "circ_hol_show";
 this.controlclean_var[i] = "hide";
 this.baseline[i] = "show";
 }
 for (i = 0; i <= 5; i++) { // 5 = this.num_rafter - 1
 this.beam_var[i] = "hide";
 this.roof_var[i] = "hide";
 }
 this.vertaxis_var = "show";
 this.controlfront_var = "show";
 this.controlback_var = "show";
 this.stage_var = "A_show";
 this.column_var[this.purlin_front] = "show";
 this.column_var[this.purlin_back] = "show";
 this.control_var[this.purlin_front] = "tri_sol_show";
 this.control_var[this.purlin_back] = "tri_hol_show";
 this.controlclean_var[this.purlin_front] = "sq_sol_show";
 this.controlclean_var[this.purlin_back] = "sq_hol_show";
 this.c = 2;
 this.be1 = "6-rafter building";
 this.be2 = "∅";
 this.be3 = "with " + String (this.c) + " columns";
 this.bc1 = "six_jia_chuan_wu";
 this.bc2 = "nil";
 this.bc3 = "yong_" + String (this.c) + "_zhu";
}
shape_current = new Shape();
shape_new = new Shape();

A SET-BASED SHAPE GRAMMAR INTERPRETER 11

4.2. CHECKING THE APPLICABILITY OF SCHEMA A2

Recall that the schemata that can be applied to the current design are shown
undimmed. How the interpreter determines the applicability of each schema
is best seen by looking at two sample schemata: one with a single
transformation, a single assignment, and descriptions; and the other with two
transformations, a single assignment, and no descriptions.

The first sample schema A2 inserts a one-rafter-long beam and a column
into the current shape and the descriptions. It can be applied to a current
shape under a maximum of one transformation and one assignment. Thus the
interpreter does not need to determine the transformation; it has only to test
the possible assignments. The code is shown below.

if (check (_root.shape_current) <> -1) {
 rule_left = new _root.Shape();
 rule_right = new _root.Shape();
 init_rule (rule_left, rule_right, check (_root.shape_current));
 gotoAndPlay ("show");
}
stop();

There are two functions here: check and init_rule. The first, check,
takes the current shape shape as its argument and returns the parametric
assignment i under which schema A2 can be applied to shape; if there is no
such assignment, it returns –1. It does this by examining each position i in
the front half of the building, 0 ≤ i ≤ purlin_mid. For each value of i, it
checks whether the value of each attribute of each element in the left shape
of the schema matches the value of the corresponding attribute in the current
shape, that is, whether g(A) ≤ Ci. In other words, the part relation ≤ is
implemented as matching pairs of values; the transformation t is moot; and
the assignment g is the index i of an array.

function check (shape) {
 for (i = shape.purlin_front; i < shape.purlin_mid; i++) {
 if (shape.column_var[i] == "show" and
 shape.column_var[i + 1] == "hide" and
 shape.purlin_var[i] == "circ_hol_show" and
 shape.purlin_var[i + 1] == "circ_hol_show" and
 shape.control_var[i + 1] == "circ_hol_show" and
 shape.control_var[i] == "tri_sol_show") {
 return i;
 }
 }
 return -1;
}

The other function init_rule sets values to be used if the schema is
applied. It takes as arguments the shapes left and right and the
assignment t returned by check. It sets the value of each attribute of each
element in the left shape of the schema to na; it sets all other elements to

12 A. I. LI AND M. K. LAU

none. This set of na values is in effect the “inverse” of the left shape of the
schema. As we will see below, it will be added, not subtracted, if the next
shape is calculated. In other words, init_rule prepares –g(A) (as it were)
and g(B) to be used if the next shape C(i + 1) = [Ci + (–g(A))] + g(B)9 needs
to be calculated.

function init_rule (left, right, t) {
 for (i = left.purlin_front; i <= left.purlin_back; i++) {
 left.purlin_var[i] = "none";
 left.column_var[i] = "none";
 if (i < left.purlin_back) {
 left.beam_var[i] = "none";
 }
 left.roof_var[i] = "none";
 left.controL_var[i] = "none";
 left.controlclean_var[i] = "none";
 left.baseline_var[i] = "none";
//
 right.purlin_var[i] = "none";
 right.column_var[i] = "none";
 if (i < right.purlin_back) {
 right.beam_var[i] = "none";
 }
 right.roof_var[i] = "none";
 right.controL_var[i] = "none";
 right.controlclean_var[i] = "none";
 right.baseline_var[i] = "none";
 }
 left.vertaxis_var = "none";
 left.controlfront_var = "none";
 left.controlback_var = "none";
 left.stage_var = "none";
//
 right.vertaxis_var = "none";
 right.controlfront_var = "none";
 right.controlback_var = "none";
 right.stage_var = "none";
//
 left.column_var[t] = "na";
 left.purlin_var[t] = "na";
 left.purlin_var[t + 1] = "na";
 left.control_var[t] = "na";
 left.control_var[t + 1] = "na";
 left.stage_var = "na";
//
 right.purlin_var[t] = "circ_hol_show";
 right.purlin_var[t + 1] = "circ_hol_show";
 if ((t + 1) == right.purlin_mid) {
 right.vertaxis_var = "hide";
 }
 right.column_var[t] = "show";
 right.column_var[t + 1] = "show";
 right.beam_var[t] = "show1";
 right.control_var[t] = "circ_hol_show";

9 This approach offers the slight advantage of requiring only an addition function, rather

than both addition and subtraction functions. However, it is inconsistent with the formal
definition of rule application and so is not ideally clear.

A SET-BASED SHAPE GRAMMAR INTERPRETER 13

 right.control_var[t + 1] = "tri_sol_show";
 right.stage_var = "A_show";
}

4.3. CHECKING THE APPLICABILITY OF SCHEMA B12

The second sample schema B12 differs from A2 in having two reflections
under which it may be applied to the current shape. It does two checks, one
on each reflection, as seen in the code below.

if (/:mirror == 0) {
 gotoAndStop ("check");
 if (check (_root.shape_current) <> -1) {
 gotoAndPlay ("show");
 }
} else {
 gotoAndStop ("check_reflect");
 if (check_reflect (_root.shape_current) <> -1) {
 gotoAndPlay ("show_reflect");
 }
}
stop();

Check and check_reflect both work like check for A2 above. They
return the assignment i under which the schema B12 can be applied to a
shape (or, if there is no such assignment, –1). The difference is that check
searches from the front to the middle of the building, while
check_reflect searches from the back towards the middle of the building.
The left shape A is in effect reflected.

function check (shape) {
 for (i = shape.purlin_front; i <= (shape.purlin_mid-1); i++) {
 // from the front to the
 // middle
 if (shape.purlin_var[i] == "circ_sol_show" and
 shape.purlin_var[i + 1] <> "hide" and
 // the "next" position is
 // towards the back
 shape.column_var[i] == "show" and
 shape.beam_var[i].indexOf ("show") <> -1 and
 shape.stage_var == "B_show") {
 return i;
 }
 }
 return -1;
}
//
function check_reflect (shape) {
 for (i = shape.purlin_back; i >= (shape.purlin_mid + 1); i--) {
 // from the back to the
 // middle
 if (shape.purlin_var[i] == "circ_sol_show" and
 shape.purlin_var[i - 1] <> "hide" and
 // the "next" position is
 // towards the front
 shape.column_var[i] == "show" and
 shape.beam_var[i - 1].indexOf ("show") <> -1 and

14 A. I. LI AND M. K. LAU

 shape.stage_var == "B_show") {
 return i;
 }
 }
 return -1;
}

4.4. PREVIEWING THE NEXT DESIGN

When the user rolls over an applicable (undimmed) schema, the next design
is created and displayed. The rollover code for schema A2 is shown below.

on (release, rollOver) {
 // init begin
 _root.current_rule = "A2";
 if (/:display_mode == "normal") {
 _root.current_stage = "normal/initshape";
 _root.stage_preview = "normal/preview";
 _root.rule_object = "normal/arrow";
 } else if (/:display_mode == "overview") {
 _root.current_stage = "overview/derivation/stage" + String
(_root.history.stage_current);
 _root.stage_preview = "overview/derivation/stage" + String
(_root.history.stage_current + 1);
 _root.rule_object = "overview/derivation/arrow" + String
(_root.history.stage_current + 1);
 }
 _root.show_rule (_root.current_rule, _root.rule_object);
 // init end
 target = check (_root.shape_current);
 show_match (_root.shape_current, target);
 _root.shape_new = apply (_root.shape_current);
 _root.preview_change (_root.shape_new, _root.stage_preview);
 show_change (_root.shape_new, target);
 /:change = 1;
 gotoAndStop ("highlight");
}

The important functions here are check, show_match, apply,
preview_change, and show_change. Check has already been seen above.

Show_match highlights g(t(A)) as a part of Ci. It accepts as its arguments
the current shape shape_source and the assignment target. It makes a
copy shape of the current shape and, for each attribute of each element in
g(t(A)), overwrites the value as highlight.

function show_match (shape_source, target) {
 shape = new Object();
 _root.Object_duplicate (shape_source, shape);
 //
 shape.purlin_var[target] = "circ_hol_highlight";
 shape.purlin_var[target + 1] = "circ_hol_highlight";
 shape.column_var[target] = "highlight";
 shape.control_var[target] = "tri_sol_highlight";
 shape.control_var[target + 1] = "circ_hol_highlight";
 shape.baseline_var[target] = "highlight";
 shape.baseline_var[target + 1] = "highlight";

A SET-BASED SHAPE GRAMMAR INTERPRETER 15

 shape.stage_var = "A_highlight";
 shape.be1 = "";
 shape.bc1 = "";
 //
 _root.show_matching (shape, _root.current_stage);
 delete shape;
}

In addition, show_match calls show_matching, which activates the
display. Show_matching takes as its arguments the next shape shape and
the variable current_stage, which specifies the view (current
transformation or derivation). It examines the value of each attribute of each
element; if the value is highlight, then the element is highlighted.

After calling show_match, the rollover code calls apply, which takes as
its argument the current shape shape_source and returns the next shape
shape. It does this by creating a copy of the current shape and transforming
it through addition and subtraction. The code for apply is shown below.

function apply (shape_source) {
 shape = new _root.Shape();
 _root.Object_duplicate (shape_source, shape);
 //
 shape = Add (Subtract (shape, rule_left), rule_right);
 shape.c++;
 if (shape.be2 <> "∅") {
 shape.be2 += chr(13) + "1-rafter beam in front";
 shape.bc2 += chr(13) + "qian_zhaqian";
 } else {
 shape.be2 = "1-rafter beam in front";
 shape.bc2 = "qian_zhaqian";
 }
 shape.be3 = "with " + String (shape.c) + " columns";
 shape.bc3 = "yong_" + String (shape.c) + "_zhu";
 return shape;
}

The important functions in apply are Add and Subtract, which we
will return to shortly. The next descriptions are created by simply inserting
new text strings into the current descriptions.

Preview_change takes as its arguments the next shape shape and
the variable shape_name, which specifies the view (current transformation
or derivation), and displays the next shape in the appropriate view.

Show_change is similar to show_match: it highlights g(t(B)) as a
part of C(i + 1).

4.5. ADDITION AND SUBTRACTION

As mentioned above, rule_left is created by init_rule and intuitively
is the “inverse” of g(A), that is, –g(A). Subtract and Add are identical. Add
takes as its arguments two shapes shape_A and shape_B and returns their
sum shape. It examines each attribute of each element of shape, and

16 A. I. LI AND M. K. LAU

overwrites that value onto the corresponding value in shape_B, unless that
value is none. The code for Add is shown here.

function Add (shape_A, shape_B) {
 shape = new _root.Shape();
 _root.Object_duplicate (shape_A, shape);
 //
 for (i = shape.purlin_front; i <= shape.purlin_back; i++) {
 if (shape_B.purlin_var[i] <> "none") {
 shape.purlin_var[i] = shape_B.purlin_var[i];
 }
 if (shape_B.column_var[i] <> "none") {
 shape.column_var[i] = shape_B.column_var[i];
 }
 if ((shape_B.beam_var[i] <> "none") and (i < shape_A.purlin_back))
{
 shape.beam_var[i] = shape_B.beam_var[i];
 }
 if (shape_B.roof_var[i] <> "none") {
 shape.roof_var[i] = shape_B.roof_var[i];
 }
 if (shape_B.control_var[i] <> "none") {
 shape.control_var[i] = shape_B.control_var[i];
 }
 if (shape_B.controlclean_var[i] <> "none") {
 shape.controlclean_var[i] = shape_B.controlclean_var[i];
 }
 if (shape_B.baseline_var[i] <> "none") {
 shape.baseline_var[i] = shape_B.baseline_var[i];
 }
 }
 if (shape_B.vertaxis_var <> "none") {
 shape.vertaxis_var = shape_B.vertaxis_var;
 }
 if (shape_B.controlfront_var <> "none") {
 shape.controlfront_var = shape_B.controlfront_var;
 }
 if (shape_B.controlback_var <> "none") {
 shape.controlback_var = shape_B.controlback_var;
 }
 if (shape_B.stage_var <> "none") {
 shape.stage_var = shape_B.stage_var;
 }
 return shape;
}

5. Conclusion

We have seen the implementation of a parametric set grammar that supports
neither emergence nor matching under multiple transformations. The
infelicities of this implementation are evident and many: it is complicated,
inefficient, and inconsistent with formal definitions.

On the other hand, we know from classroom experience that i t does what
we designed it to do, namely to show the current design, check the
applicability of a schema, preview the next design, and apply a schema.
These four capabilities have produced an interface that has proven to be

A SET-BASED SHAPE GRAMMAR INTERPRETER 17

virtually self-explanatory. In fact, rather than using shape grammar to
explain the interpreter, we now use the interpreter to explain shape grammar.

That a set-based implementation, even a suboptimal one such as this, can
accomplish so much suggests that we have not addressed the really difficult
issues, chief among which is, according to Chase (2002, 162), “handling the
unexpected nature of emergent features.” Indeed, it seems clear that the key
to easy implementation is simply to avoid emergence altogether.

The question is begged: can emergence be avoided? We believe that it
depends on the expected interaction between user and implementation. If the
grammar is not expected to be static – if, for example, the user is allowed to
revise it – then emergence is indispensable. An infallible set representation is
impossible, because it is impossible to foresee all possible revisions.

This is exactly what happened in our classroom experience. Recall that
we had expected that students would modify the grammar by increasing the
constraints on schema application; we did not expect students to alter other
aspects of the grammar. In the event, some students modified the schemata
(on paper) in ways that we had not anticipated – for instance, inserting
columns in unexpected positions – and that therefore could not be supported
by our set representation.

Our implementation fell short, given our premise that the grammar is a
hypothesis to be tested and revised. In addition, we had made no provision
for students to modify the interpreter by altering existing rules or defining
new ones. This is an interface challenge that we thought we had been spared.

But if, on the other hand, the user simply “operates” (and does not
modify) the implementation – that is, he uses the grammar as is – then an
appropriate set representation will suffice. Thus Flemming (1987) does not
miss a general interpreter for two reasons: his set representation is immune
from challenge, and his interface does not need to support rule definition by
users.

It seems that we can forego emergence with only a narrow category of
grammars: those that are fixed or changeable within known limits. For all
others, including ours, which we had initially considered analytic, we must
be able to implement emergence. This is one research goal.

At the same time, we believe that, between the limitations of a fixed
representation and the complexity of emergence, there may be room for
creative expedience. It would be worthwhile to investigate further the
relation between the user–interpreter interface and the technical
characteristics of the implementation.

Acknowledgements

We would like to thank the Chinese University of Hong Kong (CUHK) for a
Direct Grant for Research; the Department of Architecture, CUHK, for

18 A. I. LI AND M. K. LAU

special support; Wang Yang for preparing the illustrations; and our students
for cheerfully taking the grammar in directions we had not foreseen.

References

Chase, SC: 2002, A model for user interaction in grammar-based design systems, Automation
in construction 11: 161–172.

Flemming, U: 1987, The role of shape grammars in the analysis and creation of designs, in
YE Kalay (ed), Computability of design, John Wiley, New York, pp. 245–272.

Gips, J: 1999, Computer implementation of shape grammars, paper read at NSF/MIT
Workshop on Shape Computation, at Cambridge, Mass.

Li, AI: 2001, A shape grammar for teaching the architectural style of the Yingzao fashi, Ph.D.
dissertation, Department of Architecture, Massachusetts Institute of Technology,
Cambridge, Mass.

Li, AI: 2002, A prototype interactive simulated shape grammar, in K Koszewski and S Wrona
(eds), Design e-ducation: connecting the real and the virtual, Proceedings of the 20th
Conference on Education in Computer Aided Architectural Design in Europe, eCAADe,
Warsaw, pp. 314–317.

Li, AI: 2003, The Yingzao fashi in the information age, paper read at The Beaux-Arts, Paul-
Philippe Cret, and 20th-century architecture in China, at University of Pennsylvania.

Li, AI: forthcoming, Styles, grammars, authors, and users, paper read at Design computing
and cognition ’04, at Cambridge, Mass.

Liang Sicheng: 1984, Zhongguo jianzhu zhi liangbu “wenfa keben” [The two “grammar
books” of Chinese architecture], Liang Sicheng wenji [The collected works of Liang
Sicheng], Zhongguo jianzhu gongye, Beijing, pp. 357–363.

Stiny, G: 1981, A note on the description of designs, Environment and planning B: planning
& design 8: 257–267.

Stiny, G: 1982, Spatial relations and grammars, Environment and planning B 9: 113–114.

Stiny, G: 1990, What is a design?, Environment and planning B: planning & design 17:
97–103.

Stiny, G and Mitchell, WJ: 1978, The Palladian grammar, Environment and planning B:
planning & design 5: 5–18.

